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A systematic procedure is presented for the direct calculation of the free energy and its first 
and second derivatives with respect to temperature or external field for Ising models in one to 
three dimensions with a wide class of interactions. These are classified by their point group 
symmetry properties. This renormalization group method is based on the modified Kadanoff 
variational method (MKVM). This method is not only general, but also very accurate 
numerically both near and far from the critical point. Further, it includes correction to scaling 
effects not present in the standard linearized renormalization group treatment. This work 
describes the technique and presents some illustrative results for the square lattice and body- 
centered cubic lattice with nearest neighbor interactions. 

I. 1~TRoDucT10N 

In recent years, the position space renormalization group (PSRG) method and its 
application to phase transitions of various spin models has been widely studied. One 
important example is Kadanoff s lower bound renormalization group transformation 
(LBRGT) [ 11. 

In Kadanoffs LBRGT, one has variational parameters in the renormalization 
group transformation (RGT) equation relating transformed and original unit cell 
potentials. The optimum variational parameters must be chosen in order to get the 
best lower bound free energy from the transformed Hamiltonian. Several different 
methods with different degrees of complexity [24] have been proposed to determine 
these variational parameters. One such method is the Modified Kadanoff Variational 
Method (MKVM) [3]. 

In the MKVM, the variational parameter p is determined by minimizing the single 
cell free energy. This leads to an analytic nonlinear equation for p. In previous work 
[3,5], it was found that the MKVM is very accurate for two-valued spin models 
without external magnetic field, in one or two dimensions. It has also been applied to 
the three-dimensional Ising model on a BCC lattice, where the derivatives of the free 
energy were calculated by numerical differentiation of the free energy [6]. In three 
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dimensions the critical temperature obtained is within 3% of the series expansion 
value [ 121. 

In this paper, we formulate a systematic procedure for directly calculating the free 
energy and its first and second derivatives with respect to temperature and external 
magnetic fields for a wide class of Ising models based on the MKVM. In this way we 
avoid the errors arising from numerical differentiation, and thus have more accurate 
derivatives of the free energy. These quantities, including specific heat, spontaneous 
magnetization and magnetic susceptibility, are the physically interesting quantities in 
most cases. 

In the application of RG theory to phase transitions, one usually formulates the 
RGT equations for the coupling constants, then solves them for the fixed point 
solution(s) and finally expands the RGT equations around the fixed points to find the 
linearized RGT equations and their eigenvalues and hence critical exponents. In this 
work we take a slightly different approach. Here we apply the RGT to the 
Hamiltonian of the given system and calculate the free energy and its first and second 
derivatives directly. We determine the critical temperature of the given system in the 
standard way, by examining the behavior of the variational parameters and coupling 
constants (which tend to larger or smaller values, when one is at temperatures below 
or above this critical point, respectively). Then, by analyzing the values of the first 
and second derivatives of the free energy near the critical point, we can determine 
critical exponents, critical amplitudes and other critical parameters including their 
less divergent corrections which are of considerable current interest [7, 81. This 
analysis, which resembles the extraction of critical parameters from experimental 
data, is very involved and will be presented elsewhere. A preliminary least squares 
analysis for the Ising model on the BCC lattice indicates that a > a’, i.e., the specific 
heat appears to diverge less strongly when the critical temperature is approached 
from below. (This can occur because we are determining effective critical 
exponents-if one approaches the critical point sufficiently closely, our results reduce 
to those of the standard linearized RGT.) 

Since the quantities of direct interest here are free energies and their derivatives, 
instead of the fixed point and linearized RGT, it is not necessary to carry out the 
calculation in coupling constant space. In fact, to write a single computer program 
applicable to many systems with different symmetry properties, it is more convenient 
to carry out the calculation in cell potential space. This is related to coupling 
constant space by a linear transformation. 

The present paper is organized as follows: In Section II, we derive formulas for 
free energies and their first and second derivatives with respect to temperature and 
external magnetic field. These formulas are written in cell potential space instead of 
coupling constant space. In Section III, we consider some typical systems with 
various symmetry properties in one to three space dimensions. We show that we may 
use very simple criteria to classify all possible spin configurations on a unit cell into 
different degeneracy groups, each of which corresponds to an independent cell 
potential: The systems considered are listed in Table I. 

We illustrate our formalism in Section IV by calculating the free energy and its 
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first and second derivatives with respect to temperature and external magnetic field 
for Ising models on two-dimensional square and three-dimensional BCC lattices. Our 
results are compared with exact [9, IO] and series expansion values [ 11, 121 and are 
shown in Figs. 1 and 2. It is clear from the figures that our method gives very 
accurate values for derivatives of the free energy over a wide range of temperatures 
away from the critical point. When one is very close to the critical point, our results 
reduce to those of the standard linearized RG treatment. However, as pointed out 
above, our method also includes the possibility of less divergent corrections to critical 
behavior when one is near the critical point. A full analysis of this behavior is a non- 
trivial task and will be described elsewhere. 

II. GENERAL FORMALISM 

Let us consider N Ising spins ui (= f 1) on a general d dimensional lattice, which 
interact with each other via a Hamiltonian of the form [ I] : 

W(u, 9 oz,..., a,) = - c OR @, 0, (1) 
R’ 

where CR, is a sum over all d dimensional hypercube unit cells of the lattice. Note 
that these cells differ from the usual renormalization group cells in that here a given 
spin may be in more than one cell. cR, = {a, ,..., a,} with z = 2d are spins at the 
corners of the unit cell R’ and oR ,(uR,) is the interaction potential of the spins uRJ 
within the unit cell R’. After a Kadanoff LBRGT, the transformed Hamiltonian for 
N’ Ising spins pi(=*l) on lattice with double lattice spacing has the same form as 
that of Eq. (l), i.e., 

where N’ is the number of spins on the new lattice (N’ = N/z), ok (,u~) is the 
interaction potential for the Ising spins pR = {cl1 ,...,p,} on a hypercube unit cell R 
with double the original lattice spacing, and ok is related to uR ,(a,,) by the RGT 
equation (hereafter we will drop the subscripts on ~,,(a,,) and uX@~) 

evb’W1 = C exp ZU(U) +p i Pi”i - U(o,P) 3 
O,.....Ui [ i=l I 

with u(o,p) given by 

u(u,p) = ln(2 cosh(ps,)), (4) 

where s1 = Cf=, ui and p is a parameter. It follows from Eqs. (3) and (4) that of@) 
and u(u) have the same symmetry properties with respect to the point group transfor- 
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mation of spins within the hypercube unit cell. Thus v and v’ can be expressed in 
terms of the same invariant functions of Ising spins on the hypercube unit cell, 

v(u) = i Ki gi(a)? 
i=O 

~‘01) = i K: gi@), 
i=O 

(5b) 

where go(a) = go($) = 1. The other gi are defined and discussed in Appendix A. Let 
K = (Ko, K, ,..., K,) and K’ = (Kb, K;,..., K;) denote vectors of the coupling 
constants. Equation (3) may be considered as a transformation of the coupling 
constants 

K’ = F(K, P). (6) 

For z Ising spins on a hypercube unit cell, there are 2’ possible spin configurations 
and thus 2’ possible hypercube cell potentials V’(U). However, many V’(U) are equal 
due to the symmetries of the spins on a unit cell. In fact, the number of independent 
0’01) is the same as the number of independent coupling constants in Eq. (5) i.e., 
I+ 1. Let u’ denote the vector of these independent cell potentials (v,, v2 ,..., v,+ ,). 
Then v’ is related to K’ = (Kb, K{ ,..., K;) by the linear transformation of the (I + 1) X 
(I + 1) matrix T, 

(v;, 0’2 ,..., v;, J = (Kb, K; ,..., K;)T, (7) 

or briefly denoted as 

u’ = K’T. (8) 

T can be calculated from Eq. (5). We also have the inverse transformation 

K’ = u/T-‘, (9) 

where T-‘T = I. 
Now the free energy calculated from H’(,u, ,..., ,u~,) is always a lower bound for the 

free energy calculated for H(o, , u2 ,..., a,) and we must vary p to obtain the optimum 
lower bound free energy. In the MKVM, the variational parameter p is determined by 
minimizing the single cell free energy. This leads to the nonlinear equation 
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which is solved at each iterative step to determine p. From Eqs. (3), (4) and (lo), it is 
easy to show that Eq. (10) may be rewritten as 

(11) 

With F(s,%~;~) given by 

F(s1.i ;p) = (2 coshP)‘/2 COsh(Psl,i), (12) 

Where s,,~ is Cj=r oj evaluated at the ith degeneracy group. Di and ui are the number 
of elements and cell potential for the ith degeneracy group, respectively. 

To begin with, we use uR Jo, ,) of Eq. (1) as o(a) in the right hand side of Eq. (3) 
with p given by Eq. (11) and calculate the cell potential O’(U) from Eq. (3). This 
constitutes the first step of the RG transformation. We then use u’(p) thus obtained as 
input in the same procedure to calculate the transformed potential U”(U). This RG 
transformation is iterated further so that a series of cell potentials U’(U), 
u”(p),..., IP’ (,u) (and hence coupling constants K’, K”,..., KC”) and the corresponding 
variational parameters p’,p”,..., p’“‘) are obtained. In this step-by-step RG transfor- 
mation ZCI”’ for i > 1 and p@) tend to diminish to zero withjncreasing a when the 
system above the critical temperature and tend to grow when the system is below the 
critical temperature. Thus, after a large number, say GI, of RG transformations, /I 
times the free energy per spin for the original lattice may be approximated by 

f(a) N - f (Kjp’ + In 2), (1% 

for T > T, (or /3 < /3, = l/kT,) and 

j-(a) = -; [Kb”’ + ZI: Kja’g&Jo)], 
i=l 

(13b) 

for T < T, (or /I > p,), where oO is the spin configuration at T = 0. 
To calculate the internal energy and spontaneous magnetization of the system, we 

must take the first derivative of fCa) with respect to /I and h(=/?B), respectively. Let q 
denote either /? or h. By the chain rule, it is easy to see from Eq. (13) that 

where 

c = (1, 0 )...) O)T, 
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for T > T, and 

c = (1, g,eJo)~ g*(~o)v**~ g,(ao)K (15b) 
for T c T,. 

It will become clear later that in order to deal with systems with different 
symmetry properties in a unified way, it is convenient to carry out the calculation in 
the cell potential space uta)@) instead of the coupling constant space Kta’. From 
Eq. (8) and (9), we have 

8KCrn’ 
&‘m-1’ = T-‘, 

Thus Eq. (14) may be rewritten as 

Sf (=) 6u0 au(‘) &U(m) au(*) 1 . - . . . 
6q =-6s duo &U(m-1) ...m.FT-‘C. 

N-4 

(16b) 

(17) 

In Appendix B, we derive very simple general formulas for T-‘C that allow us to 
avoid explicitly calculating the matrix T. 

It should be noted that for q = h in Eq. (14), KC’“) for M = l,..., a must include all 
odd-spin coupling constants, even if we evaluate the row vector 6K0/6h and matrix 
gK(m)/JK(m - ‘) at points where the odd spin coupling constants vanish. These points 
are equivalent to the points in the cell potential space with u(c,,..., a,) = 
o(-al)...) -a,). Thus to evaluate the spontaneous magnetization in cell potential 
space, we must consider u(u,, u2 ,..., uz) and 0(-u,, -u2 ,..., -a,) as independent cell 
potentials. 

To calculate the specific heat and susceptibility of the system, we must take the 
second derivative off [a) with respect to fi and h. From Eq. (17), it follows that 

#f(a) f3*u” fh(l’ 8uU(m’ &.B((r) 
T=- 

1 
-&r&o” &Cm- 1) . . . - d”k- 1) 

rho ddl) SU(m) 
. - . . . 

+6q 6u" &Cm- 1) (18) 



DERIVATIVES OF FREE 

By the chain rule 

ENERGY FOR ISING MODELS 

for m = l,..., a 

is further given by 

6 &J(m) duo 6u”’ 6 &U(m’ 

& &(m-1) 
. - . . . 

=6q 6u0 
&U(m-1) &)(m-l) ’ 
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(19) 

Thus to calculate df’“‘/dq and 8zf(0’/&2, we must evaluate 6u”/6q, d2uo/6q2, 
&jm)/&~“‘-i) and (~//g~~~~~))(~u~~)/~oj”-~)) for i, j, k= l,..., 1+ 1. It is 
straightforward to calculate the first two quantities from the initial cell potential of 
Eq. (1). From Eq. (3) we have 

ulm’ = In 
J 

C exp(zu’+‘) (fJ)+p i P,~,-4hP) 1 
(I k=l 

(20) 

where (u, ,...,,u,) is one of the spin configuration belonging to the jth degeneracy 
group and u(a,p) is given by Eq. (4). The variational parameter p of Eq. (20) is 
essentially determined by the initial cell potentials uCm-‘). This fact must be taken 
into account in the calculation of Bu~~)/&~~-‘). Thus we have 

where 

(21) 

z 2; exp[zu’m-” (0) +p cIk= 1 pk uk - u(a,p)l 

2, exp[zu’m-l’ (6) +p c:=, pk”k - u(“~p)l ’ 
(22) 

au!m’ 
I= 

~,exp[zu’m-l’(u)+p~~=~~kuk-u(u,p)l ,?%lPk’k-$‘) 

( 

3P Co exp[zu’m-” +p ~;=,~k”k - u(“~p)l 

(i3) 
and 

d 

at, 
~Diexp(zuj~-“)--F(s,,i,p) 

dp 
aDim-)=- 

C:‘=i D, exp(zui”-“) 
(24) 

where F(s,,~;~) is given by Eq. (12). In Eq. (22), Cb is a sum over all configurations 
of u corresponding to the cell potential ui”‘-l)(u). Equation (24) is derived from 
Eq. (11) and the notation is the same as that of Eq. (11). 
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From Eq. (21), it follows that 

3°F 
-J-.-. 

+ aP 
a2P 

&‘~m-“~“~“-” (25) 

(y”!rn’ 
+ 

[ ap avJy 
ap a2v;m’ .- 

+aP2 I av!m-l) + 
* a ap 

I 
3P 

ap *-- ap &$r- I’ @iiT 

It is straightforward to derive equations for the partial derivatives on the right side of 
Eq. (25). They are very involved so we do not report them here. It is obvious that 
Eq. (25) is symmetric with respect to the indices k and i. We have used this fact to 
check our expressions for the right hand side of Eq. (25). 

This completes our formulation of the equations for the direct calculation of the 
first and second derivatives of the free energy. 

III. SYMMETRY PROPERTIES 

In order to carry out the configurational sum 2’ in Eq. (22) and also the equations 
for the partial derivatives with respect to vim-‘) and vj”- ‘) on the right side of 
Eq. (25), we must establish the correspondence between spin configurations (a, ,..., o,) 
and the independent cell potentials vi(cl,..., a,). That is, we must classify the 2’ 
possible spin configurations into different groups, such that all configurations of the 
same group have the same cell potential vi(al ,..., cz), where i runs from 1 to I + 1. 
This correspondence depends on the space dimension and symmetry properties of the 
system. However, we can establish very simple general criteria for the purpose of 
such configuration classification. 

In Appendix A, we list invariant functions for certain systems in one to three 
dimensions. We also list the relations between invariants of a given system. From 
such relations, it is easy to see that all inveriants for a given system may be expressed 
in terms of certain basic invariants. These are also given Table I. Thus by Eq. (5) 
any cell potential v(u, ,..., a,) can be expressed as a function of these basic invariants. 
So we may use these basic invariants as criteria to classify the spin configurations. 
The generation of all possible configurations and their classification into different 
groups based on their basic invariants may be carried out simply by computer. This 
scheme is briefly described in Appendix B. 

In Table I, we also list the values of 1+ 1 and possible applications of the 
considered models. 
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TABLE I 

Basic Invariants and Possible Applications for the Considered Models 

Model Dimension Basic invariants IS1 Application” 

S, 1 
S2 2 

s3 2 

s.4 2 

S, 2 

S6 3 

S, 3 

SE 3 

S9 3 

g1 
g1 

iTI g2 

gl~gz~g3 

g1, g2 

g1 

g,,gz,g, 

1 

9 

9 

22 

34 

46 

Isotropic SQ lattice with nn 
interaction only. 

Isotropic SQ lattice with nn, 
nnn and 4 spin interactions. 

Anisotropic SQ lattice with nn, 
nnn, and 4 spin interactions. 

Triangular lattice with nn 
and nnn interactions. 

Isotropic BCC lattice with 
nn interaction only. 

Isotropic SC lattice with all 
possible even spin interactions 
within the primitive unit cell. 

Anisotropic SC (tetragonal) lattice. 
Crossover from d = 2 

to d=3. 
Isotropic FCC lattice with all 

possible even spin interactions 
within the primitive unit cell. 

No&. The definition of gi (see Appendix A) may differ from case to case. 
’ nn = Nearest neighbor: nnn = next nearest neighbor. 

IV. AN EXAMPLE: PERMUTATION SYMMETRY 

In this section, we apply the formalism developed in the previous sections to an 
Ising model with isotropic nearest neighbor interactions on one-dimensional, two- 
dimensional square, and three-dimensional body-centered cubic lattices. The 
Hamiltonian in these cases may be written as 

,L?H=-k c aiaj-h~ai--~v,, 
(nn) i R 

h 
v,=ka,(a,+...+a,)+-(a,+...+a,)+ha,, 

Z 

(264 

where R is a unit cell with one spin aC in the center, z spins ai,..., a, at the corners 
and the factor /?(=l/kT) has already been included in K and h. Performing a 
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decimation calculation which sums over the central spin in each cell, we obtain an 
effective Hamiltonian for the remaining spins. The resulting cell potential is 

V eff,R = r (a, + a.* + a,) + In 2 cosh(h + k(o, + . .. + a,)), (27) 

which has permutation symmetry with respect to u, , u2 ,..., uZ and thus according to 
Appendix A can be classified as Sl, S2 or S6 for d equal to 1, 2 or 3, respectively. 
We can use g,=u, + .-. + uZ as the basic invariant to classify the 2’ possible 
configurations of u1 ,..., ur into different degeneracy groups, each of which 
corresponds to the same cell potential. We then use ~,rr,~ of Eq. (27) as uO in 
Section II to calculate the free energy per spin and its first and second derivatives 
with respect to K and h. We must divide all these quantities by a factor 2 because 
Eq. (27) was obtained after a decimation calculation. The results for d = 1 agree 
extremely well with the exact results obtained by transfer matrix method [ 131. These 
results also provide a check on our computer program. 

A few results for d = 2 and 3 are shown in Figs. 1 and 2, respectively. Figs. lb and 
c should be compared with Figs. 6 and 7 in the paper by Kadanoff et al. [ 11. Their 
results were obtained by numerical differentiation for the free energy and thus involve 
more numerical error than the present work. 

In future work, we will present the results of this method applied to several models 
with different symmetry properties. Preliminary analysis indicates that we obtain very 
accurate values both close to and far from the transition temperature, as is clear from 
Figs. 1 and 2. The application of this method near the transition temperature is of 
particular interest since it allows an evaluation of correction-to-scaling effects due to 
nonlinear terms and all the (linearized renormalization group) eigenvalues. 

V. DISCUSSION 

From the previous sections, it is clear that to calculate the free energy and its 
derivatives for a given model, it is sufficient to use the basic invariants of the model, 
and not necessary to use the relations among all invariants (i.e., the even numbered 
equations of Appendix A). For a given system, it is much easier to obtain the former 
than the latter. However, if we desire to calculate the flow of the coupling constants 
(K, > Kl,..., K,) in parameter space, as the step-by-step RG transformation is carried 
out, we may use the even numbered equations of Appendix A to calculate the 
(I + 1) x (1+ 1) matrix T, and hence T-’ of Eqs. (8) and (9), respectively. 

The method used in this paper may be easily extended and applied to systems with 
symmetry properties different from those listed in Table I. In particular, we may 
combine the ideas of this paper and our previous work [ 141 to calculate derivatives of 
the free energy for antiferromagnetic systems. 

It is clear from the preceding sections that to write a single computer program 
applicable to many systems with different symmetry properties, it is very convenient 
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to carry out the calculation in cell potential space. Some of the calculation techniques 
in this paper may be combined with other RG transformation methods, such as 
Nauenberg and Nienhuis’ method [ 151, to calculate the free energies and their 
derivatives. 

Our approximate method to determine the variational parameters in the lower 
bound RG transformation of Kadanoff et al. is not a full implementation of the 
variational principle. This is because we determine the variational parameters by 
minimizing the free energy of a single cell, which has a finite number of spins. Thus 
the variational parameters are uncoupled from the singularities of the free energy of 
the system and we do not encounter the singularity problem considered by Van 
Saarloos et al. [ 161 den Nijs and Knops [ 171 and Barber [ 181. 

APPENDIX A: SYMMETRY PROPERTIES AND INVARIANT FUNCTIONS FOR ISING 

SPINS ON HYPERCUBE UNIT CELL 

The locations of the z (=2d) Ising spins on a hypercube unit cell are shown in 
Figs. Al, A2 and A3 for d = 1, 2 and 3, respectively. We shall use K, to denote the 
two-spin coupling constant between ui and oj which appears on the right hand side of 
Eq. (5). 

Now we consider and write down the invariant functions on the right hand side of 
Eq. (5) for the following possible systems. 

Sl: d= 1. 

g, =u1 + 02, 

g2 =u1u2* 

They satisfy the relation 

g, =g;/2 - 1. 

S2: d = 2; ~(a, ,..., a,) has permutation symmetry. 

g,=~,+o,+u,tu,, 

g,=u,u, tu,u, tu,u, tu,u, tu,u, tu2uq, 

g,=u,u,u, tu,u,u,+u,u,u, +u,u,u2, 

g4 = u1 u2”3u4* 

(AlI 

(‘42) 

643) 

FIG. Al. Location of the Ising spins u,, uz on the one-dimensional unit cell. 
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FIG. A2. Location of the Ising spins CT,, ul, uj, u4 on the two-dimensional unit cell. a and b are the 
primitive translation vectors and a is the angle between them. 

They satisfy the relations 

g2=g:p2, 
g3 = I g1 g2 - 3g, l/3, (A4) 

g4 = I g1 g3 - %2]/4. 

S3: d = 2; ~(a, ,..., a4) has rotation, reflection and inversion symmetries. 
K,, = K,, = K,, = K,, , K,, = K,, , but K,, #K,, . For the unit cell of Fig. A2, 
Ial = lbl, a = 90” 

g,=a,+a,+u,+u,, 

g2=uI~3+u*u4, 

g3=U,U2+U2U3+U3U4+U4U,, 

g4=u,u,u,+u,u,u4+u3u4u, +u,u,u,, 

g5 = u1”2u3u4~ 

They satisfy the relations 

g,=g:P-g2-2~ 

g4 = g1g2 - g1 

g, =g:/2 - 1. 

WI 

646) 

FIG. A3. Location of the king spins u,, uI ,..., u8 on the three-dimensional unit cell. a, b, and c are 
the primitive translation vectors and a, 8, y are the angles between them. 
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S4: d=2; o(ol,..., a4) has reflection and inversion symmetries. K,, = Kj4, 
K,,=K,,,K,,fK,,,K,,=K,,.FortheunitcellofFig.A2,Jal#JbJ,a=9O0. 

g, =u1+u, +a, +u4, 

g, =u1*3 +u204, 

g, =u1u2 +u3fJ4, 

647) 

g, = ulu., + 0203, 

g, =u,u2u3 +u,o,u, +u,u,u, +uqu*uz, 

g, = U1~2U3U4’ 

They satisfy the relations 

g4=d/2-&-&-23 

g5 = g1g2 - 17 WI 
g, =g;/2 - 1. 

S5 : d = 2; v(u, ,..., a,) has inversion symmetry. K,, = K,, = K,, = K,, , K,3 # K,, 
for the unit cell of Fig. A2, Ja 1 = 1 bl, Q = 60°. 

TI hey satisfy the relations 

g, =u1+ 03, 

gz=~,f~,, 

g3 =u1u39 

84 = u2”4* 

g5 =u,u2 +u,u, +u,u, +u,u,, 

g6 =“1u2u3 +“,(73u4, 

87 =fJ,uzQ, + uz(J3u4, 

g8 =“lu2u3u4. 

g, =g:p- 1, 

g, =g:p - 1, 

gs =g1 g29 

g, =g, g,* 

g,=g, g4, 

gs =g, g4* 

(A101 

581/43/2-S 
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S6: d = 3; u(u, ,.a., 0s) has permutation symmetry. 
Let g, denote the sum of all possible products of i different u’s. g,, for i = l,..., 8, 

are the basic invariants of the permutation group. It is easy to show that g, satisfy the 
relation 

g,=o,+a,+~*~ +a,, (All) 

gi+l =[g,gi-(8-i+l)gi-l]/(itl), 6412) 

for i = l,..., 7. Thus each g, may be expressed in terms of g,. 

S7: d = 3; u(u,,..., us) of Eq. (5) has symmetry properties of the simple cubic unit 
cell, i.e., 0, point group. 

g,=a,+a,+u,+*-*+a,, 

g,=u,u,+*** 

g,=u,u, + ..* 

g, =u,u2u3u4 + ..f 

g, = u,u*u3u8 + *** 

g, = U1U2U3U6 t .*. 

g, = U,U*U3", t **I 

g, = U,U2U7U8 t ... 

g,, = U,U3U6U8 t ... 

g,, = U,U2U3U4U5U6 + *** 

g,, = u,u2u3u4u5u, t *** 

g,3 = u,u*u3u5u,u~ t *** 

g,, = u1”2u3u4u5u6u7u8 

g,, = u10203 t *.* 

g,, = u,u*u7 t -.* 

g,, = U,U3U6 t **- 

g,, = u1u2u3u4u5 + *-* 

g,, = U1U2U3U7U8 + *** 

g,, =“Iu2u3u4u5u6u7 + 

( 12 terms), 

(4 terms), 

(12 terms), 

(6 terms), 

(24 terms), 

(8 terms), 

(24 terms), 

(6 terms), 

(2 terms), 

(12 terms), 

(12 terms), 

(4 terms), 

(1 term), 

(24 terms), 

(24 terms), 

(8 terms), 

(24 terms), 

(24 terms), 

(8 terms), 

(8 terms), 

(A131 
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where, in order to save space, only one typical term for each invariant is written. It is 
easy to show that the g, of Eq. (A13) are related to each other by the equations 

s,=bw-g2-g3-4 
g,=g3g4-2g2r 
&=g,g3-2847 
s,=g:/2-2, 
g, = (d/2 - 6 - 324 -g, - g9Pv 
g, = (g, g, - 4g, - 6g, - %)A 

g,o=g:/6-2-~g,-g,/3-g8/3- 

ET14 = do/2 - 1, 

g,, =gz g14, 

g12 =g4 g149 

g13 = g3 g14, 

g,, = g, g3 - g, 3 

g,, = (g, g2 - %I - iT16)/2, 

g,, = (8, g4 - 3g, - g15 - g,,)A 

g,, = g14 g15 9 

g,, = g,4 gl6) 

g20 = g,4 g17, 

IT,1 = g14 g, * 

89/3, 

(A141 

S8: d= 3; U(CJ,, u2 ,..., us) of JZq. (5) has symmetry properties of the tetragonal unit 
cell.FortheunitcellofFig.A3,jal=JbJfJcJ,a=P=y=9O0. 

g,=o,+o,to,+a,+o,+a,+u,tu,, 

g, = UlU5 + u*u(, + u3u7 t uqug, 

g, = u1u7 + a2u8 + (~~(5~ t uqa6, 

gs=U1U3 tU,U4+U,U7 tUdUg, 

g,=U,u,tU,U,+U~u~+u~o,tu~U,tu~u~tu,u~+u~u,, 

g, = fJlfJ2(J3U4 + U5U6U7U8, 
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(8 terms) 

g,, = u,u,u3u, + **. (16 terms) 

(8 terms) 

g,, = u,o*u7(T~ + **a (4 terms) 

gl5 ="1u503u7 + u2"6u4u8~ 

gl6 = u1"3u608 + u2"4u5u7~ 

g17=",u2u3u4u5(T6 t "' (8 terms), 

g,, = ~1u2u)u5~6u7 + *** 

g,, =u~u~u)u5u7u* + *a* 

g,, = U,U~U3U4~507 t **a 

g2, = u,u2u4u5uf,u7 t *'* 

(4 terms), 

(4 terms), 

(4 terms), 

(8 terms), 

g22 ="1u2u3u4uSu6u7u8~ 

g23 = U1 U2U3 t **’ (8 terms), 

6415) 

gz4=u1u2u6 t "' (16 terms), 

g,,=u,u,u, t *** ( 16 terms), 

(8 terms), 

g27 =u,ujb6 t *** (8 terms), 

g,, = U~U2U3U4U5 t ‘*a (8 terms), 

(16 terms), 

g,, = u,(J364u5u6 t ‘*’ 

g3, = a,u2u3u5u7 + +.a 

( 16 terms), 

(8 terms), 

(8 terms), 

g3, =u1u2u3u4u5u6u7 t “’ (8 terms), 

where in order to save space, only one typical term for some invariants is written. 
Invariants of Eq. (A15) satisfy the relations 
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&J=g4g5-%39 
g,o=g4g,-2g2, 
g,, =g3 g5 - 2g4, 

g,, =g2 g3 - Q6, 

g,3=&?3g4-k, 

g16 = (g: + g: - 4 -g,, - &, - d/2 -d/2 - d/2)/6, 

g, = <d + 4g,, - gw 

g,, =&?:I2 - 2 -g7 -g16, 

g,=g:/2-2-g15~ 

g,, = d/2 - 2 - g15, 

g,,=dP- 13 

gi=g22 gi-15 for i= 17,..., 21, 

g,, = g,(& -g, - g4 + 2& - g6 - 2)/6, 

g,, = 2&, - g,(g, - g, + 2& - 2&)/2, 

g,, = 2g2, - g,(g, -g, + 2& - 2g4)/2, 

g,, = -2g2, + g,(& -if, + 2& - 2)/2, 

g27 =g23 -glk2 -g6)/2, 

gi=g22 gi-5 

g,, = g22 g1* 

for i = 28, 29,..., 32, 

(‘416) 

S9: d = 3; u(u, ,..., 0,) has the symmetry properties of the primitive unit cell for the 
FCC lattice. The longest diagonal is in the ul, u7 direction. For the unit cell of 
Fig.A3, lal=lbl=Icl,a=/?=y=60°. 

g,=u,+u,+u,+u,+u,+u,, 

g, = “,t”3 + u6 + u8) + u7(“2 + u4 + u5), 

g, =“2u8 +030, +0406, 

g6=“lu7, 

g, = ‘lb2 + u4 + u5) + u7(u3 + 06 + us), 

g,=~,~,+~,~,+~,~,+~,~,+~,~,+~,~,, 
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g, =u,u‘zu3u, + *** (6 terms), 

g,o = u1 u2uju* + a’* (12 terms), 

g,, = u,u2u4u, + .a’ (6 terms), 

g,, =u2uju6u* + **. (6 terms), 

g,3 =u,u*u3u‘6 + .*- (6 terms), 

g,, ="1u2u4uS + u3"6u7uE~ 

g,j =U*U2U3U7 + *” (6 terms), 

g,, = u2uju4u8 + *'- (6 terms), 

gl7 =U2U3U7U8 t *" ( 12 terms), 

g,, = u1"2u7u8 + u1"4u6u7 + ~1~5~3u7r 

gl, ="3u4u5u6 + u2"3u5u8 + u2"6u4u8, 

g20=",u3u6u8+u2u4u5u7~ 

g,, =u,u*u3u4u5u, t ... (6 terms), 

g,, =u,(T2(TJu4(36u8 t "* (6 terms), 

g,, =u,u2u3u5u,u8 + *** (3 terms) 

g24 ="2u3u4u5u6u8~ 

&!,, =u,u2u)(T4u5u6 t ". (6 terms) 

g,, = ~~~~~~~~~~~~ t '*' (6 terms) 

g27 ="1u2u3u4u3u6u7u8 

g28 =UlU2U4 t “* (6 terms), 

(6 terms), 

g,,=o,o,u, t .” (12 terms), 

g,, = (T] 0,((12 t 04 t 05 t 03 t 06 t 08), 

g,,=u,o,o,+'*' (6 terms), 

g,, = U2U(jU8 + **. 

g,,=u,o,u, t *** 

(12 terms), 

(6 terms), 

k!,, ="3u6u8 + u2"4u5, 

g,, = U~U2UJU4U~ t *.. (6 terms) 

g3, =u,u2u3u4u, + -** (6 terms) 

(Al7) 
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g,, =a,a~a,a,a, + *** 

g,, = a2a,a,a,a, + a** 

g,, =a,a3a4a5a6 + -.a 

(12 terms), 

(6 terms), 

(6 terms), 

g,, =a~u‘3a~a~a, + **. ( 12 terms), 

g,, =u,a*a,a6ag + *.a (6 terms), 

843 =aIa20405~7 +aIa3a6a8a7~ 

i?,, =“Ia2a3a4a506u8 + 0203a4~506=7a8~ 

g,, =o,(T2(J304(7506(T7 + *‘* (6 terms), 

where in order to save space, only one typical term for some invariants is written. 
Invariants of Eq. (A15) satisfy the relations 

g,=g,g2--g4, 

g8=d/2-3-g3-&, 

glo=g4gs-g7~ 

g,, =g3 g,, 

gl, =g, g, - 2g8, 

g13=g488/2-g7-g10, 

g,, = (83 g7 - 2g7 -g13 -g,oY3, 

g,, = g6 g8, 

gl, = g5 g,, 

g,, = cd - 3)/2? 

g,, =df2 - 3 -g, -g19, 

g,,=(g,+g8)(& +g6)--2(g3 +g4)-glS-g16, 

g, = g7 g812 - g4 - g,7/29 

g20 = (g3 g4 - a4 -g17 - 89)/% 

g27 = do/2 - 1, 

gi=g27 gi-18 for i = 21,22 ,..., 26, 

g30 =gl g,, 

g,, =g2 g,, 

g32 =g1 g5, 

6418) 
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g33 =g2 g5 -g2, 

g,, = (82 g4 - 3g, - g30 - g32)/27 

g2, =L?1 g3 -g34, 

g29 = (g2 g, - 2g2 - g33PY 

g35 = (g2 g3 - 2g2 - g29 - 833)/3, 

gi=g27 gi-8 for i = 36, 31,..., 43, 

gi = g27 gi-43 for i = 44,45. 

APPENDIX B: DETAILS OF THE CALCULATION 

In this appendix, we outline some techniques used in our computer program to 
obtain the numerical results. Our computer program can be applied to all systems 
listed in Appendix A with space dimension and symmetry properties as input 
parameters. The important programming techniques are as follows: 

1. Generation of all possible spin configurations. Let z denote the number of 
spins on a hypercube unit cell of the d dimensional lattice and NCF denote the 
number of all possible configuration of such z spins u, ,..., uz ; then z = 2d, NCF = 2’. 
Let Z be an integer running from 0 to NCF - 1. We express Z as a z digit binary 
number and let 1 correspond to spin up (+1) and 0 correspond spin down (-1); then 
each binary integer from 0 to NCF - 1 corresponds to a spin configuration (e.g., the 
integer 0 corresponds to all spins down and NCF - 1 corresponds to all spins up, 
which is the ground state of the ferromagnetic system). Thus, with d as input 
parameter, we can generate all possible spin configurations.’ 

2. Classification of spin configurations. From Table I, it is clear that for space 
dimension d > 2 there are systems that have different symmetry properties. Thus, for 
each spin configuration generated in the manner described above, we calculate the 
values of the basic invariants based on the parameter “sym” and then classify these 
spin configurations into different degeneracy groups such that the configurations in 
the same group have the same values for all basic invariants (and hence cell 
potential) and in different groups have at least one different value. We label the 
degeneracy group in such a way that the ground state configuration, which is the all 
spin up configuration for ferromagnetic system, belongs to the final group. For each 
group, we also store the degeneracy Di (i.e., the number of configurations in the 
group) and the configurations belonging to this group. We will use D to denote the 
vector whose elements are degeneracy, i.e., D = (Dl, D, ,..., D,, 1). 

3. Calculation of the column vector T-‘C. In this section, we will derive 

’ This method of generating all possible binary spin configuration was described for the percolation 
problem in P. J. Reynolds, Ph.D. thesis, MIT, 1979. 
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formulas for the vector T- ‘C, which appears at the end of Eqs. (17) and (18). From 
Eq. (5b), it is easy to show that 

Thus, Eq. (13) may be rewritten as 

1+1 
j-(a) = -1/za l/NCF C Uj”‘Di + In 2 

i=l 
(BW 

for T > T, and 

p = -l/z~(uj$ P2b 1 

for T < T,, where oj”,‘, is the ground state cell potential. We now take the first 
derivative of Eq. (B2) with respect to q. By the chain rule, it is easy to show that 

Sf (*’ -&O &)“’ d”(m) du(=’ -=-. 
6q 6q 6uo . *. &)(m-l) *” &k-l) l/z”Co, (B3) 

where 

for T > T, and 

C, = (D,, Dz,..., D,, ,)/NCF = D/NCF 

co = (0, 0 )...) 0, 1) 

Wa) 

Wb) 

for T < T,. Comparing Eqs. (17) and (B3), it is obvious that T- ‘C of Eq. (17) is just 
Co of Eq. (B3) and (B4). 
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